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Abstract. This paper presents a case study in UML-based modelling and validation of the
intricate timing aspects arising in a small but complex component of the airborne Medium
Altitude Reconaissance System produced by NLR1.
The purpose is to show how automata-based timing analysis and verification tools can be
used by field engineers for solving isolated hard points in a complex real-time design, even
if the press-button verification of entire systems remains a remote goal.
We claim that the accessibility of such tools is largely improved by the use of a UML profile
with intuitive features for modeling timing and related properties.

1 Introduction

The analysis and design of real-time systems often raises very intricate problems as system devel-
opment aims at preserving certain timing conditions and at guaranteeing that the system responds
appropriately and in a timely fashion to a complex environment. The cause of this intricacy is the
very nature of time, which (at the level of human perception and of presently designed systems)
appears as an absolute, global notion, thus implicitly aggregating the relative and local timing
conditions appearing in system design.

The conception of systems in terms of local hypotheses and local solutions is nevertheless a
mandatory requirement for being able to design non-trivial systems by functional decomposition.
Consequently, designers seem to be obliged to build systems by component aggregation, without
knowing a priori what effect this aggregation will have on the timeliness of each component and
of the system as a whole (some relevant examples of unexpected timing conditions resulting from
this aggregation will be shown on the case study presented in this paper).

One solution to this problem lies in using automated tools to analyze the timeliness of a system.
There are basically two types of frameworks for reasoning with time: model-based and axiomatic
ones. While axiomatic frameworks (for example the duration calculus [CHR92]) allow to reason
about time independently of a behavioral model, model-based frameworks allow to mix in a same
model both functional and timing aspects. Having a functional model of a system (which is a
design artifact normally available for any system), it is in principle easier to obtain a faithful and
complete mixed model. This is done by annotating the initial model with timing information.
? This work has been partially funded by the European OMEGA project (IST-2001-33522).
1 National Aerospace Laboratory, The Netherlands.



On the level of semantics and of techniques underlying model-based timing analysis, one can
find timed extensions of Petri-nets, process algebras or automata (for a bibliographic survey see
[Obe01]). From the point of view of tooling, the most elaborate verification features can be found
in tools based on (various flavors of) timed automata, like [BGO+04, LPY97, Yov97].

In order for automated timing analysis to be put effectively to work, two educational barriers
have to be stepped over. The first concerns understanding the limitations of current technology,
which cannot work for systems presenting both a very complex functional behavior, and complex
timing constraints. From our experience, interesting insights in the timing aspects of a system are
usually gained only when the (unrelated) details of the functional part are abstracted away.

The second barrier concerns the complexity of the formalism capturing a timing model and its
properties. In this case, the timing analysis tool can help the common user overcome the barrier,
for example by embedding the timed formalism in a familiar language, and by reusing as much as
possible from the user’s knowledge. A relevant example in this sense is that of the languages used
for expressing timing properties. In the literature there are various extensions of temporal logics
extended with means to express quantitative time constraints, which prove to be very flexible.
However, from our experience, property formalisms based on familiar concepts (like state machines
accepting or rejecting a set of observations) are more easily accepted by the users.

In this paper, we present the results of a case study conducted jointly by experts and industrial
users, in which meaningful results about timing properties of the studied system were obtained
by analyzing a model tailored for this purpose using a user friendly UML-based tool. The rest of
the paper is structured as follows: §2 presents the case study, with focus on the timing aspects. §3
presents the modeling of this case study using a specific formalism (the OMEGA UML profile),
the main results of timing validation and the techniques employed during the experience. In §4 we
discuss some conclusions that can be drawn from this study.

2 The MARS system

2.1 Overall presentation

The acronym MARS stands for Medium Altitude Reconnaissance System. The system controls a
high resolution photo camera embedded in a military aircraft, taking pictures of the ground from
medium altitude. The system counteracts the image quality degradation caused by the forward
motion of the aircraft by creating a compensating motion of the film during the film exposure.
The system is also responsible for annotating the frames with the current time and position. The
system also performs health monitoring and alarm processing functions.

Exposure control (Forward Motion Compensation (FMC) and Frame Rate) as well as anno-
tations are being computed in real-time based on the current aircraft altitude, ground speed,
navigation data (latitude, longitude, heading), time-of-day, etc. These parameters are acquired
from the avionics data bus of the aircraft.

2.2 The Databus Manager

For the purpose of this case study we concentrated on a sub-system of MARS which presents
interesting timing problems. This sub-system, called Databus Manager (DM in the following)
monitors the health of the data bus controller and, in general, the health of the communication
going on trough the data bus.

As mentioned before, the MARS receives input data concerning altitude and navigation from
other components of the avionic system. The DM component supervises the (non-)reception of
data messages, and provides a status which is used by the system’s alarm logic. In addition,
the DM periodically polls the databus controller and changes the status when controller fails /
recovers. Thus, the status computed by the DM has three values: Operational, BusError and
ControllerError. The precise requirements on the DM status computation are described below.



The two types of data inputs of the DM are received periodically, with a period of P = 25ms
and a jitter of ±J = 5ms, and may occasionally get lost. The periods are not synchronized and
may have an arbitrary offset smaller than the length of one period. Figure 1 shows a possible
configuration of the reception windows along the time axis (windows in which no message reaches
the DM are marked with KO).

The basic functional requirements on the DM status are:

– Failure of the controller leads to a change of status to ControllerError. Recovery leads to
BusError.

– Status changes from BusError to Operational when two correct consecutive messages are re-
ceived from both sources (assuming no controller error).

– Status changes from Operational to BusError when three consecutive messages from a source
are lost (assuming no controller error).

We note that the requirements above do not define quantitatively the moment when the status
change takes place. It is obvious that a maximal reactivity is desirable. Two reactivity measures
(at least) can be defined for the DM :

– reactivity to errors, defined as the upper bound that the DM guarantees for the time (R1)
between the last correctly received message from the source causing a switch to BusError, and
the actual moment of the switch.
Analysis shows that R1 is necessarily greater than 85ms (3P + 2J). The actual reactivity
depends on the implementation chosen for the DM , as we will see in the next section. This
value of 85ms gives us an ideal reactivity that should be approached.

– reactivity to recovery, defined as the upper bound that the DM guarantees for the time (R2)
between the first message in a series of correct messages leading to a switch to Operational,
and the actual moment of the switch.
In this case, R2 depends on the offset between the periods of the two data sources. However,
even in the worst case R2 is less than 60ms (2P + 2J).

The experiments we conducted are described in the next section. They had two goals:

(1) to check that the proposed implementations for the DM verify the above mentioned functional
properties, and

(2) to determine the reactivity bounds offered by the different proposed implementations (and
point out the optimal solution).
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Fig. 1. Timing of the message reception windows, DM status and reactivity measures.



3 UML modeling and validation experiments

3.1 Background on the OMEGA UML profile and the IFx toolset

The MARS sub-system was modeled using the OMEGA UML profile and timing and functional
validation was performed using the IFx toolset. Here we briefly introduce these technologies.

The OMEGA profile defines an operational semantics for a large subset of UML, designed to
suit the needs of designers of real-time embedded systems. Concerning functionality, the semantics
defines aspects pertaining to control (like the rules governing concurrency and the execution of
active and passive objects) and communication primitives. These aspects of the profile are detailed
in [DJPV03, DJPV05].

Concerning timing, which is described in detail in [GOO03, GOO05], the profile defines a
series of lightweight extensions to UML for naming events associated with syntactic constructs
and for describing time-driven behavior by using timers, clocks, timed guards or transition urgency
attributes. A different part of the profile, not used here, deals with the declaration of timing
constraints independently of the functional model. A third part concerns the formalization of
timing and functional requirements, which in OMEGA UML are expressed by observer objects.
Observers represent set of accepted observations which is defined by a state machine reacting to
events and conditions occurring at the execution of the system. Observers define safety properties
by use of states stereotyped with <<error>> as final states.

IFx [OGO05] is a toolset providing simulation and verification functionalities for OMEGA
UML models. At the core of the tool there is a state space exploration engine for an extended
communicating timed automata model (IF [BGM02, BGO+04]). In order to scale to complex
models, IF supports optimization and abstraction in several ways. The tool implements static
and dynamic optimizations like dead variable factorization, dead code elimination, partial-order
reduction and abstract interpretation of clocks. Each such optimization is conservative with respect
to certain types of properties, and in particular with respect to timed safety properties which are
of interest in the MARS system.

3.2 Overview of the MARS model

The architecture of the MARS model is shown in the UML context diagram in Figure 2. The main
component is the DatabusManager (DM) object which maintains the global status and monitors
message loss. For simplicity, the user has separated the polling of the bus controller in a different
object, the ControllerMonitor.

In order to verify the DM under the assumptions on message arrival and controller errors
mentioned in § 2.2, what the OMEGA profile prescribes is a modeling of the environment using
the same concepts as for modeling the system. In Figure 2 we see therefore three more objects
corresponding to the altitude data source, the navigation data source and the bus controller.

As we will see in the following sections, the requirements concerning the DM can be achieved
in several ways. The model in Figure 3 shows a possible realisation of the DM by a single state
machine. Transitions are triggered either by signals coming from the data sources (evAltDataMsg,
evNavDataMsg), or from the ControllerMonitor (evControllerError, evControllerOK), or fi-
nally by internal timeouts used to detect message loss (altDataT imer, navDataT imer).

Concerning the environment, that needs to be modeled as well, an important need is the ability
to naturally model nondeterministic behavior. For example, Figure 4 shows the state machine of
data sources, using interval conditions on clocks to model the nondeterminism due to the uncer-
tainty on the starting time of the first period and due to possible jitter.

3.3 Expressing properties

Both, the functional and the reactivity properties to be verified on this model described in § 2.2 can
be expressed by observers. Figure 5 shows the observer checking the upper bound BR1 guaranteed



: DatabusManager

AltMsgTimeoutCount : int
NavMsgTimeoutCount : int
altDataTimer : Timer
navDataTimer : Timer

: ContollerMonitor

currentStatus : int
previousStatus : int

: DatabusController

status : int

altDataSource : DataSource

cOffset : Clock
tPeriod : Timer
cJitter : Clock

navDataSource : DataSource

cOffset : Clock
tPeriod : Timer
cJitter : Clock

MARS
system

Environment

Fig. 2. Structure of the MARS model.

ControllerError

Operational

BusError

/timeout(altDataTimer)//
begin
 AltMsgCount := 0;
 altDataTimer.set(25)
end

/evNavDataMsg()//
begin
 NavMsgTimeoutCount := 0;
 navDataTimer.set(35)
end

/evControllerError()//begin
  navDataTimer.reset();
  altDataTimer.reset()
end

/evAltDataMsg()//
begin
 if (AltMsgCount < 2) then
   AltMsgCount := AltMsgCount + 1
 endif;
 altDataTimer.set(35)
end

[NavMsgCount >= 2 and AltMsgCount >= 2]/begin
 NavMsgTimeoutCount := 0;
 AltMsgTimeoutCount := 0
end

/timeout(navDataTimer)//
begin
 NavMsgCount := 0;
 navDataTimer.set(25)
end

/timeout(navDataTimer)//
begin
 NavMsgTimeoutCount := NavMsgTimeoutCount + 1;
 navDataTimer.set(25)
end

[NavMsgTimeoutCount = 3 or AltMsgTimeoutCount = 3]/begin
  NavMsgCount := 0;
  AltMsgCount := 0
end

/evNavDataMsg()//
begin
 if (NavMsgCount < 2) then
   NavMsgCount := NavMsgCount + 1
 endif;
 navDataTimer.set(35)
end

/timeout(altDataTimer)//
begin
 AltMsgTimeoutCount := AltMsgTimeoutCount + 1;
 altDataTimer.set(25)
end

/evAltDataMsg()//
begin
 AltMsgTimeoutCount := 0;
 altDataTimer.set(35)
end

/begin
 NavMsgCount := 0;
 AltMsgCount := 0
end

/evControllerError()//begin
  navDataTimer.reset();
  altDataTimer.reset()
end

/evControllerOK()//
begin 
 NavMsgCount := 0;
 AltMsgCount := 0
end

 

Fig. 3. State machine of the DatabusManager.



Init

/cOffset.set(0)

WaitCycle ProduceData

[cOffset <= 25]
/ tPeriod.set(25)

timeout(tPeriod) /
begin
  cJitter.set(0);
  tPeriod.set(25)
end

[cJitter <= 10]
/ self.sendData()

[cJitter <= 10]
/ informal "lost data"

Fig. 4. Environment model: state machine of the data sources.

for the R1 value. We note that this observer monitors only the message loss from a single source
(the altitude data source in this case). Due to symmetry, this can be done without loss of generality.

init

wait

match send evAltDataMsg() to dm
[dm @ Operational] //
c.set(0)

match send evAltDataMsg() to dm //
c.set(0)

C

[dm @ ControllerError]

[dm @ BusError]

[ c = BR1 ]

<<error>>
KO

[dm @ Operational]

<<observer>>
PR1

BR1 : int
c : Clock

Fig. 5. Observer for verifying the reactivity bound for R1.

3.4 Initial results

The functional and reactivity properties have been verified against the model presented before.
Due to the important state explosion encountered, a simplifying assumption was made on the
environment: we consider that the two data sources are synchronized (i.e., their period of 25 ms
begins at the same time in every cycle; the two data can nevertheless be sent at different moments
due to jitter). It is clear that this assumption is not conservative as the reaction time due to
message loss may (and is likely to) be longer when the two data sources are de-synchronized. In
order to fully verify the properties without this non-conservative assumption, a different model for
the DM had to be designed, which is presented in the next section.

The functional properties have been proved to hold on the different DM models that we have
considered. However, comparison has shown that very similar models may present different reac-
tivity bounds. For example, consider the model for the DM in Figure 6 (the ControllerError state
has been omitted).

The internal transitions of the BusError state are identical to those from Figure 3. The dif-
ference between the two models is that for each data source, in Figure 3 we count three short



Fig. 6. An alternative model of the Databus Manager.

timeouts of 35, 25 et 25ms in state Operational in order to go in BusError, while in Figure 6 we
use a long timer of 85ms which has to expire in order to go in BusError. Apparently, the latter is
more efficient, as it makes less use of timers and no counting in state Operational.

By experiments, we have determined that the reactivity of the first model, as measured by
the observer in Figure 5, is of 85ms while the reactivity of the second one is of only 110ms. The
diagnostic traces provided by the model-checker have shown that the difference comes from the
moment when the timers are initialized when going from BusError to Operational : in the first
model timers are kept running as they are in state BusError, while in the second one both timers
are re-initialized when going from BusError to Operational because the timeout duration has to
change from 35 to 85ms. This is a simple mistake that a designer may do when refactoring the
model in order to gain performance.

Using the model-checker on this abstract model easily exposed the loss of reactivity due to this
“optimization”.

3.5 Compositionality, abstractions and further results

In order to fully verify the desired properties without imposing unrealistic assumptions on the
environment, we need to use conservative abstractions in the model of the DM . In order to do so,
a more compositional model has been designed. The DM is decomposed into several parts (see
Figure 7):

– A Receiver component for each data source. This component supervises the messages sent by
one source and keeps track of the correct and erroneous messages during the last 3 reception
windows. It sends out a signal evCnt with a numeric parameter of 3 bits, which represents



the status of the last 3 reception windows (1 for a correctly received message, 0 for a missed
message, where the least significant bit corresponds to the most recent message).

– An ErrorLogic component which receives evCnt messages from Receivers, maintains the global
status. It goes from BusError state to Operational state when all Receivers have received cor-
rect messages during the last 2 reception windows. It goes from Operational state to BusError
state when at least a Receiver has received no correct messages during the last 3 reception
windows.

: DatabusManager

: DatabusController

altDataSource : DataSource

navDataSource : DataSource

MARS
system

Environment

nr : Receiver

ar : Receiver

: ErrorLogic

: ContollerMonitor

Fig. 7. Decomposition of the DM .

This model enables us to use an abstraction for verifying safety and reactivity properties in
the general case of de-synchronized sources, using the following abstraction: we replace one data
source and one Receiver with a chaotic abstraction “ReceiverAbs” which may send evCnt with
any parameter value between 0 and 7 at any time. This is a very rough over-approximation of the
source–receiver pair, but it proves to be sufficient for preserving the desired properties. The model
is also interesting as it allows a generalization to a system with more than two data sources.

In order to further reduce the state space explosion, we also over-approximate the Controller-
Monitor polling cycle (10ms in the initial model) by using a completely non-deterministic polling
which may take place at any time. While this introduces new execution traces that are impossible
in the initial model, the resulting state space is much smaller as, due to the use of a symbolic
representation of time, many, previously distinct, states are represented by the same symbolic
state.

To assess the efficiency of these abstraction, the table in Figure 8 below shows the size of the
state space and the processing time for several configurations of the MARS system.

4 Conclusion

The experiment presented here has shown that timing analysis tools may be used efficiently for
solving isolated, hard timing problems in a UML design, even if fully automated verification for
large designs remains a remote goal.

The use of the OMEGA UML profile in order to capture timing models and properties has
facilitate a very quick learning and adoption of our tools by experienced UML designers. Without
the knowledge of a verification expert, the designers were able to use even advanced techniques
like abstractions.



Configuration Number of Number of User time
states transitions

Initial model with only one source 1084 1420 < 1s
(no CM polling)
(non-conservative)

Initial model with two synchronized sources 99355 151926 36s
(no CM polling)
(non-conservative)

Initial model with two de-synchronized sources > 1136768 > 1676126 > 9m30s
(no CM polling)
(conservative – does not finish)

Abstract model, 10ms CM polling > 1494864 > 701120 > 8m12
(conservative – does not finish)

Abstract model with no CM polling 118690 174871 45s
(non-conservative)

Abstract model with lazy CM polling 155166 263368 1m21s
(conservative)

Fig. 8. Verification times and state space sizes for different verification configurations.

A very efficient abstraction technique in such models is the relaxation of timing constraints,
which is usually very simple to model (in many cases it involves only the change of the urgency
attribute of some transitions in the system model). Since this kind of abstraction is always an
over-approximation of the system’s behavior, it is always conservative for the satisfaction of safety
properties, including timed ones. The downside is that it can introduce false negative results.
However, in the MARS example this has never occurred, showing that, by exercise, a designer can
learn to use abstractions which do not break the verified properties.

We have also found out during the experiments that some methodological guidelines for writing
observers and for using the IFx toolbox are necessary during the learning process. A set of guidelines
has been developed as a side result of this teamwork (see also [OGL05]).
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